

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE AL Further Mathematics (9FM0) Paper 3C Further Mechanics 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P72092RA* Publications Code 9FM0_3C_2206_MS* All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 80.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

• Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.

- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.

• DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.

- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.

N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.
Marks must be entered in the same order as they appear on the mark scheme.

• In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.

• Accept column vectors in all cases.

• Misreads – if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft

• Mechanics Abbreviations

M(A)	Taking moments about A.
N2L	Newton's Second Law (Equation of Motion)
NEL	Newton's Experimental Law (Newton's Law of Impact)
HL	Hooke's Law
SHM	Simple harmonic motion
PCLM	Principle of conservation of linear momentum
RHS, LHS	Right hand side, left hand side.

Question	Scheme	Marks	AOs
1a	$ku \longrightarrow u$		
	$ \begin{array}{c} A\\ 3m \end{array} \qquad B\\ m \end{array} $		
	either $v \longrightarrow 2v$		
	or $v \longleftrightarrow 2v$		
	Note that if they start with their 2v to the left this creates an impossible situation (the particles need to pass through each other). The maximum score is M1M1M1.		
	Impulse received by <i>B</i> :	M1	3.4
	$\frac{3}{2}mu = m(2v - (-u))$	A1	1.1b
	$v = \frac{u}{4}$	A1	1.1b
		(3)	

1b	Use of CLM or Impulse-momentum for one option for A:	M1	3.4
	$3kmu - mu = 2mv + 3mv \left(=\frac{5mu}{4}\right)$		
	or $3m(v-ku) = -\frac{3mu}{2} \left(3mu\left(\frac{1}{4}+\frac{1}{2}\right)=3mku\right)$	A1ft	1.1b
	$k = \frac{3}{4}$	A1	1.1b
	Form a second equation in k $\left(3mku - mu = 2mv - 3mv\left(=-\frac{mu}{4}\right) \text{ or } 3m\left(v + ku\right) = \frac{3mu}{2}\right)$	M1	3.1a
	$k = \frac{1}{4}$	A1	1.1b
		(5)	
		(T0tal 8 N	/ /Iarks)
Notes			
(a)M1	 Must have a correct combination of mass and velocity: pairing velocimass of the other scores M0 Allow for subtraction the wrong way round or impulse in the wrong of Assuming that you have not seen an incorrect formula stated, allow for overt evidence of subtraction. Allow if the common factor of <i>m</i> is not seen 	direction.	
A1	Correct unsimplified equation for <i>B</i> (or <i>A</i>). Allow without <i>m</i>		
A1	Correct answer only		
(b) M1	Correct method to form an equation in k . Must be dimensionally correct or Condone sign errors in CLM. Allows marks for CLM equation here if seen in (a) and used correctly Rules for impulse-momentum as above. M1 is available if they have direction of the impulse. An equation which allows for the change in $-\mathbf{v}$ can score full marks. Could be working with either option for the direction of motion of A	y to find <i>k</i> here not reversed th	ne
A1ft	Correct unsimplified equation in <i>u</i> , <i>v</i> or their <i>v</i>		
A1	One correct solution Be aware that a sign error in the impulse-momentum equation for A c fortuitous answer. A fortuitous answer scores A0 (FYI the incorrect answers are $\frac{-7}{4}$ and $\frac{1}{4}$)	can lead to a	

M1	Correct method to form a second equation in k (reversing the direction of motion of A)
A1	Second correct solution

Question	Scheme	Marks	AOs
2.	$200 \text{ N} \longrightarrow F$ $100 \text{ N} \longrightarrow 600g$ $150g$		
	Equation of motion for the system or for the van	M1	3.3
	$F - (100 + 200) - (150 + 600)g \sin \alpha = (150 + 600)a$ or $F - 200 - T - 600g \sin \alpha = 600a$	A1 A1	1.1b 1.1b
	Equation of motion for the trailer	M1	3.1b
	$T - 100 - 150g\sin\alpha = 150a$	A1	1.1b
	Use of $F = \frac{12000}{9}$	M1	3.4
	Solve for <i>T</i>	M1	1.1b
	T = 307(310)(N)	A1	2.2a
		(Total 8 M	(larks)
Notes			
M1	Need all terms and no extras (the inclusion of $+T$ - <i>T</i> is not an error). Di correct. Condone sign errors and sin/cos confusion Must have non-zero acceleration and include the driving force	mensionally	У
	Unsimplified equation in F or their F (and T if relevant) with at most one C is the first product of F	e error	
M1	Correct unsimplified equation in F or their F (and T if relevant) Need all terms. Dimensionally correct. Condone sign errors and sin/cos of Or a second equation of motion involving the driving force.	confusion	
	Correct unsimplified equation (in T and $/$ or F or their F if relevant)		
M1	Use of $P = Fv$ seen or implied.		
M1	Complete method to find $T(FYI: a = 0.72(4))$		
	Tension correct to 3 sf or 2 sf A fractional answer $\left(\frac{920}{3}\right)$ is not acceptable because this result follows the use of $g = 9.8$		

Question	Scheme	Marks	AOs		
3	Impulse momentum equation(s)	M1	3.1a		
	$ \begin{pmatrix} 3 \times \cos \alpha \\ 3 \times \sin \alpha \end{pmatrix} = \frac{1}{2} \begin{pmatrix} v_x - 2.8 \\ v_y \end{pmatrix} \qquad \left(v_x = \frac{32}{5}, v_y = \frac{24}{5} \right) $	A1 A1	1.1b 1.1b		
	$v = \frac{1}{5}\sqrt{32^2 + 24^2}$	M1	1.1b		
	$= 8 \left(m s^{-1} \right)$	A1	1.1b		
	Alternative working parallel and perpendicular to the impulse: $ \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} v_1 - 2.8 \times \cos \alpha \\ v_2 \pm 2.8 \times \sin \alpha \end{pmatrix} v_1 = 7.68, v_2 = \pm 2.24 $ $ v = \sqrt{7.68^2 + 2.24^2} = 8 (m s^{-1}) $				
		(5)			
3alt	ν 6 <u>π-α</u> 2.8				
	Using cosine rule:	M1			
	$v^{2} = 2.8^{2} + 6^{2} - 2 \times 2.8 \times 6\cos(\pi - \alpha)$	A1 A1			
	Solve for <i>v</i>	M1			
	$v = 8 \left(m \mathrm{s}^{-1} \right)$	A1			
		(5)			
	(Total 5 ma				
Notes					
M1	Use of $\mathbf{I} = m\mathbf{v} - m\mathbf{u}$ in two dimensions. (i.e. resolving used) Dimension Allow for a combined equation in vector format or for just one compone sin/cos confusion. Allow if <i>m</i> seen but not substituted.	-			
AI A1	Equation for one component correct unsimplified Equations for both components correct unsimplified Allow A1A1 for a correct unsimplified vector equation Allow A marks if in terms of <i>m</i> and α				
	Correct use of Pythagoras for their components to obtain the numerical w This may be seen or implied: an alert candidate might spot the 3, 4, 5 tria		speed		

A1	Correct only
Alt	
M1	Correct use of cosine rule in a dimensionally correct triangle. The lengths of the sides must be consistent, i.e. v, 2.8 and 6 or $\frac{1}{2}v$, 1.4 and 3 and it must be a correct vector triangle (vectors combined correctly)
A1	Unsimplified equation with at most one error
A1	Correct unsimplified equation
M1	Substitute for trig. and solve for <i>v</i>
A1	Correct only

$9mu\cos 30^{\circ} - 8mu\cos 30^{\circ} = 4mv\cos 60^{\circ} - 3mw\cos \theta$ $(u\cos 30^{\circ} = 2v - 3w\cos \theta) (u\cos 30^{\circ} = 2v - 3w_x)$ $A1 1.11$ $A1 1.11$ $A1 1.11$ $A1 (w_y =)w\sin \theta = 3u\sin 30^{\circ} \left(=\frac{3u}{2}\right)$ $B1 3.4$ $B1 3.4$ $(w_x =)w\cos \theta = \frac{1}{3}(2v - u\cos 30^{\circ}) = \frac{5u\sqrt{3}}{18}$ $(w_y =)w\sin \theta = \frac{3u}{2}$ $M1 1.11$ $\left(\Rightarrow \tan \theta = \frac{9\sqrt{3}}{5}, \ \theta = 72.2^{\circ}\right)$ Direction deflected by 77.8° (78° or better) $A1 2.2a$ $Magnitude of impulse$ $M1 3.11$ $= 4m(v\cos 60^{\circ} - (-2u\cos 30^{\circ}))$ $A1 1.11$	Parallel to line of centres: $9mu \cos 30^{\circ} - 8mu \cos 30^{\circ} = 4mv \cos 60^{\circ} - 3mw \cos \theta$ $(u \cos 30^{\circ} = 2v - 3w \cos \theta) (u \cos 30^{\circ} = 2v - 3w_x)$ $\Rightarrow A : (w_y =) w \sin \theta = 3u \sin 30^{\circ} \left(= \frac{3u}{2} \right)$ $\Rightarrow B : v \sin 60^{\circ} = 2u \sin 30^{\circ} (= u) \left(v = \frac{2u}{\sqrt{3}} \right)$ $(w_x =) w \cos \theta = \frac{1}{3} (2v - u \cos 30^{\circ}) = \frac{5u\sqrt{3}}{18}$ $(w_y =) w \sin \theta = \frac{3u}{2}$	A1 B1 B1	3.1b 1.1b 3.4 3.4 1.1b
33 M1 3.11 Parallel to line of centres: M1 3.11 Parallel to line of centres: M1 3.11 9mucos 30° - 8mucos 30° = 4mvcos 60° - 3mwcos θ ($ucos 30° = 2v - 3wcos \theta$) ($ucos 30° = 2v - 3w_x$) A1 1.11 \uparrow A : ($w_x =$) $w \sin \theta = 3u \sin 30°(= \frac{3u}{2}) B1 3.4 \langle \psi_x =) w \cos \theta = \frac{1}{3}(2v - u \cos 30°) = \frac{5u\sqrt{3}}{18} B1 3.4 (w_x =) w \cos \theta = \frac{1}{3}(2v - u \cos 30°) = \frac{5u\sqrt{3}}{18} M1 1.11 (w_x =) w \cos \theta = \frac{1}{3}(2v - u \cos 30°) = \frac{5u\sqrt{3}}{18} M1 1.11 (w_x =) w \cos \theta = \frac{1}{3}(2v - u \cos 30°) = \frac{5u\sqrt{3}}{18} M1 1.11 (w_x =) w \cos \theta = \frac{1}{3}(2v - u \cos 30°) = \frac{5u\sqrt{3}}{18} M1 1.11 (w_x =) w \sin \theta = \frac{3u}{2} M1 1.11 (w_y =) w \sin \theta = \frac{3u}{2} M1 1.11 (w_y =) w \sin \theta = \frac{3u}{2} M1 1.11 (w_y =) w \sin \theta = \frac{3u}{2} M1 3.11 (w_y =) w \sin \theta = \frac{3u}{2} M1 3.11 (w_y =) w \sin \theta = \frac{3u}{2} M1 3.11 (w_y =) w \sin \theta = \frac{3u}{2} M1 <$	Parallel to line of centres: 9mu cos 30° - 8mu cos 30° = 4mv cos 60° - 3mw cos θ $(u \cos 30° = 2v - 3w \cos \theta)$ $(u \cos 30° = 2v - 3w_x)$ $A : (w_y =) w \sin \theta = 3u \sin 30° \left(= \frac{3u}{2}\right)$ $B : v \sin 60° = 2u \sin 30° (= u)$ $\left(v = \frac{2u}{\sqrt{3}}\right)$ $\left(w_x = \right) w \cos \theta = \frac{1}{3} (2v - u \cos 30°) = \frac{5u\sqrt{3}}{18}$ $(w_y =) w \sin \theta = \frac{3u}{2}$	A1 B1 B1	1.1b 3.4 3.4
$(u\cos 30^{\circ} = 2v - 3w\cos\theta) (u\cos 30^{\circ} = 2v - 3w_{x})$ A1 1.11 $(u\cos 30^{\circ} = 2v - 3w\cos\theta) (u\cos 30^{\circ} = 2v - 3w_{x})$ B1 3.4 $(w_{x} =)w\sin\theta = 3u\sin 30^{\circ}(=u) \left(v = \frac{2u}{\sqrt{3}}\right)$ B1 3.4 $(w_{x} =)w\cos\theta = \frac{1}{3}(2v - u\cos 30^{\circ}) = \frac{5u\sqrt{3}}{18}$ $(w_{y} =)w\sin\theta = \frac{3u}{2}$ M1 1.11 $\left(\Rightarrow \tan\theta = \frac{9\sqrt{3}}{5}, \theta = 72.2^{\circ}\right)$ Direction deflected by 77.8° (78° or better) A1 2.24 Magnitude of impulse M1 3.11 $= 4m\left(v\cos 60^{\circ} - \left(-2u\cos 30^{\circ}\right)\right)$ A1 1.11 $= 4m\left(\frac{1}{2} \times \frac{u}{\sin 60^{\circ}} - \left(-2u\frac{\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ A1 2.24 OR: magnitude = 3m(3u\cos 30^{\circ} + w\cos\theta) $= 3m\left(+\frac{5u\sqrt{3}}{18} - \left(-\frac{3u\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ (9)	$(u\cos 30^\circ = 2v - 3w\cos\theta) (u\cos 30^\circ = 2v - 3w_x)$ $(u\cos 30^\circ = 2v - 3w_x)$ $(u\cos 30^\circ = 2v - 3w_x)$ $(w_y =)w\sin\theta = 3u\sin 30^\circ (= u) \left(v = \frac{3u}{\sqrt{3}}\right)$ $(w_x =)w\cos\theta = \frac{1}{3}(2v - u\cos 30^\circ) = \frac{5u\sqrt{3}}{18}$ $(w_y =)w\sin\theta = \frac{3u}{2}$	B1 B1	3.4 3.4
$ \begin{array}{c} \begin{array}{c} \left(A : (w_{y} =) w \sin \theta = 3u \sin 30^{\circ} \left(= \frac{12}{2} \right) \\ \left(B : v \sin 60^{\circ} = 2u \sin 30^{\circ} \left(= u \right) \left(v = \frac{2u}{\sqrt{3}} \right) \\ B1 \end{array} \right) \\ \left(W_{x} =) w \cos \theta = \frac{1}{3} (2v - u \cos 30^{\circ}) = \frac{5u \sqrt{3}}{18} \\ \left(w_{y} =) w \sin \theta = \frac{3u}{2} \\ \left(w_{y} =) w \sin \theta = \frac{3u}{2} \\ (w_{y} =) w \sin \theta = \frac{3u}{2} \\ (w_$	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	B1	3.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(w_x =)w\cos\theta = \frac{1}{3}(2v - u\cos 30^\circ) = \frac{5u\sqrt{3}}{18}$ $(w_y =)w\sin\theta = \frac{3u}{2}$		
$\begin{pmatrix} (w_y =)w\sin\theta = \frac{3u}{2} \\ (\Rightarrow \tan\theta = \frac{9\sqrt{3}}{5}, \ \theta = 72.2^{\circ} \end{pmatrix}$ Direction deflected by 77.8° (78° or better) A1 2.24 Magnitude of impulse M1 3.11 $= 4m(v\cos 60^{\circ} - (-2u\cos 30^{\circ}))$ A1 1.11 $= 4m\left(\frac{1}{2} \times \frac{u}{\sin 60^{\circ}} - \left(-2u\frac{\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ A1 2.24 OR: magnitude = $3m(3u\cos 30^{\circ} + w\cos\theta)$ $= 3m\left(+\frac{5u\sqrt{3}}{18} - \left(-\frac{3u\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ (9)	$(w_y =) w \sin \theta = \frac{3u}{2}$	M1	1.1b
Magnitude of impulse M1 3.11 $= 4m(v\cos 60^\circ - (-2u\cos 30^\circ))$ A1 1.11 $= 4m\left(\frac{1}{2} \times \frac{u}{\sin 60^\circ} - \left(-2u\frac{\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ A1 2.2a OR: magnitude $= 3m(3u\cos 30^\circ + w\cos \theta)$ $= 3m\left(+\frac{5u\sqrt{3}}{18} - \left(-\frac{3u\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ $= 3m\left(+\frac{5u\sqrt{3}}{18} - \left(-\frac{3u\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ $= 3m\left(-\frac{3u\sqrt{3}}{2}\right) = \frac{16\sqrt{3}}{3}mu$	$\left(\Rightarrow \tan \theta = \frac{1}{5}, \ \theta = 72.2^{\circ}\right)$		
$= 4m(v\cos 60^{\circ} - (-2u\cos 30^{\circ}))$ $= 4m\left(\frac{1}{2} \times \frac{u}{\sin 60^{\circ}} - \left(-2u\frac{\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ $A1$ $2.2a$ $OR: magnitude = 3m(3u\cos 30^{\circ} + w\cos \theta)$ $= 3m\left(+\frac{5u\sqrt{3}}{18} - \left(-\frac{3u\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ (9)	Direction deflected by 77.8° (78° or better)	A1	2.2a
$= 4m\left(\frac{1}{2} \times \frac{u}{\sin 60^{\circ}} - \left(-2u\frac{\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ A1 2.2a OR: magnitude = $3m(3u\cos 30^{\circ} + w\cos\theta)$ $= 3m\left(+\frac{5u\sqrt{3}}{18} - \left(-\frac{3u\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ (9)	Magnitude of impulse	M1	3.1b
OR: magnitude = $3m(3u\cos 30^\circ + w\cos\theta)$ = $3m\left(+\frac{5u\sqrt{3}}{18} - \left(-\frac{3u\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ (9)	$=4m\big(v\cos 60^\circ - (-2u\cos 30^\circ)\big)$	A1	1.1b
$= 3m \left(+ \frac{5u\sqrt{3}}{18} - \left(-\frac{3u\sqrt{3}}{2} \right) \right) = \frac{16\sqrt{3}}{3}mu$ (9)	$=4m\left(\frac{1}{2}\times\frac{u}{\sin 60^{\circ}}-\left(-2u\frac{\sqrt{3}}{2}\right)\right)=\frac{16\sqrt{3}}{3}mu$	A1	2.2a
(()) (9)	OR: magnitude = $3m(3u\cos 30^\circ + w\cos\theta)$		
	$= 3m\left(+\frac{5u\sqrt{3}}{18} - \left(-\frac{3u\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$		
(Total 9 Marks		(9)	
		(Total 9 N	Marks)
		$= 4m\left(\frac{1}{2} \times \frac{u}{\sin 60^\circ} - \left(-2u\frac{\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ OR: magnitude = $3m(3u\cos 30^\circ + w\cos\theta)$ $= 3m\left(+\frac{5u\sqrt{3}}{18} - \left(-\frac{3u\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$	$= 4m\left(\frac{1}{2} \times \frac{u}{\sin 60^{\circ}} - \left(-2u\frac{\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ A1 OR: magnitude = $3m(3u\cos 30^{\circ} + w\cos\theta)$ $= 3m\left(+\frac{5u\sqrt{3}}{18} - \left(-\frac{3u\sqrt{3}}{2}\right)\right) = \frac{16\sqrt{3}}{3}mu$ (9)

A1	Correct unsimplified equation. Allow e.g. w_x in place of $w\cos\theta$ and v_x in place of $v\cos60^\circ$.
	Allow if they have divided through by a common factor e.g. m
	NB there is no mark for the correct use of the impact law because the candidates are not required to find the coefficient of restitution. They might however find it as part of an alternative method. In this case, the M marks below are for a complete correct method to achieve the required result. Ignore work to find e if it is not used.
	No change perpendicular to line of centres for one sphere. Allow e.g. w_y in place of
B1 B1	$w\sin\theta$.
	Check the diagrams – the vertical components are often shown there.
	No change perpendicular to line of centres for both spheres
M1	Use scalar product or solve simultaneous equations to find θ for a relevant angle using their w_x
	They need to get as far as θ = a numerical value for a relevant angle
A1	78° or better
	Use of $I = mv - mu$ in direction of line of centres. Condone subtraction in either order
	Allow M1 if they think that they have subtracted but they have not actually taken account of the change of direction.
M1	Allow M1 if they go direct to the correct expression with a + without telling you that they have taken account of the change in direction
	Allow M1 if they go straight to an unsimplified expression in surds using values already found earlier.
A1	Correct unsimplified expression.
	Allow the negative of this
A 1	Any equivalent simplified form. Must be positive. Condone if they change sign at the very end
A1	without explaining why. Accept $9.2(376)mu$ (2 sf or better)
	NB You might see candidates using the right angle and matrix multiplication to rotate the initial
	velocity of <i>B</i> to find the correct components of the velocity of <i>B</i> after impact.

Question	n Scheme	Marks	AOs
5a	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Using CLM:	M1	3.4
	6mu - 4mu = -3mv + 4mw (2u = -3v + 4w)	A1	1.1b
	Use of impact law	M1	3.1a
	$w + v = e \times 3u$	A1	1.1b
	Complete method to find <i>w</i>	M1	2.1
	$\begin{cases} 3w+3v=9eu\\ -3v+4w=2u \end{cases} \implies 7w=9eu+2u, w=\frac{u}{7}(9e+2) * \end{cases}$	A1*	2.2a
		(6)	
5b	$w' = \frac{1}{2} \times \frac{u}{7} (9e+2) \left(=\frac{u}{14} (9e+2)\right)$	B1	1.1b
	$v = \frac{u}{7} (12e - 2)$	B1	1.1b
	For a second collision: $w' > v$	M1	3.3
	$9e+2>2(12e-2), 0$	A1	1.1b
		(4)	
	(Total 10 mar		
Notes			
(a) M1	Use of CLM. Need all terms. Must be dimensionally correct. Condone sign errors. Accept consistent cancelling of m		
A1	Correct unsimplified equation for CLM. They can have <i>v</i> in either direction		
M1	Correct use of the impact law (used the right way round) Condone sign errors in finding speed of approach and speed of separation	on.	
A1	Correct unsimplified equation. Signs consistent with equation for CLM.		
M1	Complete method to find <i>w</i> e.g. by forming simultaneous equations using CLM and Impact Law and solving. This requires both of the preceding M marks		
A1*	Obtain given answer from correct working. Accept with $2 + 9e$ in place of $9e + 2$		

	Check that the answer does follow from the working.
(b) B1	Speed of Q after impact with the wall. Any equivalent form. Correct speed can be implied by a correct negative velocity.
B1	Speed of <i>P</i> after impact with <i>Q</i> . Accept \pm . Any equivalent form in <i>u</i> and <i>e</i> (seen or implied)
M1	Form correct inequality using their v and w '. A correct inequality has P and Q both moving away from the wall
A1	Correct interval only. Accept unsimplified fraction. Need both ends of the interval. Must be strict inequality at both ends.

Question	Scheme	Marks	AOs		
6(a)	GPE lost by B – GPE gained by A	M1	3.4		
	$=4\times g\times 3-2\times g\sin\theta\times 3$	A1	1.1b		
	=82(82.3)(J)	A1	1.1b		
		(3)			
6(b)	Total KE gained = $\frac{1}{2} \times 6 \times 4.5^2 (= 60.75) (J)$	B1	3.1b		
	Max friction $\mu 2g \cos \theta (= \mu \times 2 \times 9.8 \times \cos \theta = 15.68 \mu)$	B1	3.1b		
	Work done against friction $= 3 \times F_{\text{max}} (= 47.04 \mu)$	B1ft	3.4		
	Work-energy equation: their GPE lost = their KE gained + their WD against friction	M1	3.4		
	$82.32 = 60.75 + 47.04\mu$	A1	1.1b		
	$\mu = 0.459 (0.46)$	A1	1.1b		
		(6)			
6(c)	Work-energy equation for A:	M1	3.4		
	$\frac{1}{2} \times 2 \times 4.5^2 = 2g\sin\theta \times d + 2g\cos\theta \times \mu d$	A1ft	1.1b		
	$\frac{1}{2} \times 2 \times 4.5^2 = 2g \sin \theta \times d + 2g \cos \theta \times \mu d$ $\left(= 19.6 \times \frac{3}{5} \times d + 19.6 \times \frac{4}{5} \times \mu d \right)$	A1ft	1.1b		
	d = 1.07(1.1)	A1	1.1b		
		(4)			
	(Total 13 mark				
Notes					
(a)M1	Expression for change in GPE. Must be dimensionally correct and resolved terms where necessary.Allow subtraction either way round				
A1	Correct unsimplified expression for the change in PE (before substitution for $\sin \theta$) Allow subtraction either way round				
A1	2 sf or 3 sf. Accept 8.4g or $\frac{42g}{5}$ ISW				
	Must be positive but condone a sign change at the end without explanation				
(b) B1	Gain in KE for the system (not just for one block)				

B1	Correct unsimplified expression for F_{max} seen or implied
B1ft	Correct expression for work done: follow their F_{max} This is dependent on them having found an expression for F_{max}
M1	Complete method using work-energy to form an equation in μ . Require all terms (needs to consider the KE and GPE of both blocks). Dimensionally correct. Condone sign errors.
A1	Correct unsimplified equation in μ
A1	3 sf or 2 sf only
	 NB: It is possible to find the value of µ by finding the tension in the string and forming a work-energy equation for particle <i>B</i>, but in this case the first B1 is for KE of <i>B</i> and correct tension (25.7(N)) B1 for F_{max} B1ft is for work done by the tension in the string and against friction M1 for 3 x 25.7 = 20.25 + 35.28 + 3 x 15.68µ O.E.
(c)M1	All terms required. Dimensionally correct. Condone sign errors and sin / cos confusion. If the equation uses $d+3$ in place of d in the PE term it is correct if it also includes a term for the initial PE. If the equation uses $d+3$ in place of d in the term for work done then it scores M0.
A1 A1	Unsimplified equation in d and μ with at most one error Correct unsimplified equation in d and μ The ft is on their μ if they have substituted a value.
A1	3 sf or 2 sf only

Question	Scheme	Marks	AOs
7(a)	EPE at $A = \frac{\lambda a^2}{2a}$ or EPE at $B = \frac{\lambda (2a)^2}{2a}$	M1	2.1
	Form work-energy equation:	M1	3.3
	$\frac{\lambda a^2}{2a} + mg \times 3a = \frac{\lambda (2a)^2}{2a} \left(\frac{\lambda a}{2} + 3mga = 2\lambda a\right)$	A1 A1	1.1b 1.1b
	$3mg = \frac{3\lambda}{2} \implies \lambda = 2mg *$	A1*	2.2a
		(5)	
7(b)	Extension at equilibrium:	M1	2.1
	$\frac{2mgx}{a} = mg \implies x = \frac{a}{2} *$	A1*	1.1b
	Alternative for the first M1A1:		
	Use the work-energy equation to obtain $\frac{dV^2}{dx}$ and set the derivative equal to zero	M1	
	$\frac{1}{a} \times 2x - 1 = 0 \Longrightarrow x = \frac{a}{2}$	A1	
	Use work-energy equation to find max speed:	M1	3.4
	$\frac{2mgx^{2}}{2a} + mg \times (2a - x) + \frac{1}{2}mV^{2} = \frac{2mg(2a)^{2}}{2a}$	A1	1.1b
	$\left(\frac{ag}{4} + \frac{3ag}{2} + \frac{1}{2}V^2 = 4ag\right)$	A1	1.1b
	$V = 3\sqrt{\frac{ag}{2}}$	A1	2.2a
		(6)	
7(c)	 e.g. for B1 Need to include the GPE of the spring The extension of the spring at equilibrium will be different The spring will have KE You would need to include the KE of the spring in the energy equation You would need to include the GPE of the spring in the energy equation The GPE of the system changes It would take work to raise the spring so the package would have less KE If the spring has mass then GPE of the spring would need to be included 	B1	3.5b

		(1)	
	(Total 12 N	Marks)
Notes			
	Correct method for EPE seen or implied		
(a) M1	Need something of the form $\frac{1}{2}kx^2$ where $k = \frac{\lambda}{a}$		
	Must be using the formula for EPE correctly at least once		
M 1	Require all terms. Dimensionally correct. Condone their EPE. Condone sign errors		rs
A1	Unsimplified equation with at most one error. A repeated error in EPE formula is one error		
A1	Correct unsimplified equation.		
A1*	Obtain given answer from correct working		
(b) M1	Use correct method for tension to find the extension at equilibrium. Need to see the formula for tension used . Allow verification with an appropriate conclusion If they use SHM they must use $F = ma$ to prove that <i>P</i> is moving with SHM, otherwise $0/2$.		
A1*	Correct answer from correct work Allow verification with an appropriate conclusion		
Alt:M1	Or an equivalent method for finding the turning point of a quadratic		
Alt:A1*	Correct answer from correct work		
M1	Use given x to form work-energy equation. Need all terms, and dimensi Condone sign errors. Accept with values of λ and x not substituted	onally cor	rect.
A1	Unsimplified equation with at most one error. Need given λ and given some point. A repeated error in the formula for EPE is one error.	x substitu	ted at
A1	Correct unsimplified equation with given λ and given x substituted at set	ome point	
A1	Use correct method for tension to find the extension at equilibrium. Any form. $2.1\sqrt{ag}$ or better	y equivale:	nt
(c) B1	Any valid response. B0 if answer includes an additional incorrect factor. Must be specific e. GPE changes", but the GPE of the system changes is OK. Must relate to an effect on the energy equation E.g. for B0 The extension changes <i>AB</i> will increase The tension/energy/GPE/work done etc would increase The VE/GPE/EDE/acceleration/axtension/unlocity.changes	g. not just	"the
	The KE/GPE/EPE/acceleration/extension/velocity changes The mass of the spring would drag down and the EPE would change The EPE/KE/GPE etc would be variable		

There would be tension in the spring as well	
It has weight	
The velocity would decrease as energy is converted	

Question	Scheme	Marks	AOs
8a	$R = \frac{V}{S}$		
	$\mathbf{v} = 6\mathbf{i} + \dots$	B1	3.4
	8ej	B1	3.4
	impact with $ST \Rightarrow \frac{8e}{6} < \frac{1}{2}$, $0 < e < \frac{3}{8}$	B1	3.1b
		(3)	
8b	Perpendicular to ST: direction $\pm \mu (-\mathbf{i} + 2\mathbf{j})$	B1	1.2
	Component parallel to ST: $(6\mathbf{i} + 2\mathbf{j}) \cdot \lambda (2\mathbf{i} + \mathbf{j})$	M1	3.1b
	$= \left(\left(6\mathbf{i} + 2\mathbf{j} \right) \cdot \frac{1}{\sqrt{5}} \left(2\mathbf{i} + \mathbf{j} \right) = \right) \frac{1}{\sqrt{5}} \left(12 + 2 \right)$	A1	1.1b
	Component perpendicular to $ST: \pm \left(\frac{1}{2}(6\mathbf{i}+2\mathbf{j})\cdot\gamma(-\mathbf{i}+2\mathbf{j})\right)$	M1	3.4
	$=\frac{1}{2\sqrt{5}}\left(-6+4\right)$	A1	1.1b
	$\mathbf{w} = \frac{14}{\sqrt{5}} \frac{1}{\sqrt{5}} \left(2\mathbf{i} + \mathbf{j} \right) + \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \left(-\mathbf{i} + 2\mathbf{j} \right)$	M1	3.1b
	$\mathbf{w} = \left(\frac{28}{5} - \frac{1}{5}\right)\mathbf{i} + \left(\frac{14}{5} + \frac{2}{5}\right)\mathbf{j} = \left(\frac{27}{5}\mathbf{i} + \frac{16}{5}\mathbf{j}\right)\operatorname{or}\left(5.4\mathbf{i} + 3.2\mathbf{j}\right) (\mathrm{m \ s}^{-1})$	A1	2.2a
		(7)	
8b alt 1	Perpendicular to ST: direction $\pm \mu (-\mathbf{i} + 2\mathbf{j})$	B1	1.2
	$\mathbf{w} = a\mathbf{i} + b\mathbf{j} \Longrightarrow (6\mathbf{i} + 2\mathbf{j}).(2\mathbf{i} + \mathbf{j}) = (a\mathbf{i} + b\mathbf{j}).(2\mathbf{i} + \mathbf{j})$	M1	
	14 = 2a + b	A1	
	$\pm \frac{1}{2} (6\mathbf{i} + 2\mathbf{j}) \cdot (-\mathbf{i} + 2\mathbf{j}) = (a\mathbf{i} + b\mathbf{j}) \cdot (-\mathbf{i} + 2\mathbf{j})$	M1	
	$2b - a = \pm 1$	A1	
	Solve simultaneous equations for <i>a</i> and <i>b</i>	M1	
	$\mathbf{w} = \left(\frac{27}{5}\mathbf{i} + \frac{16}{5}\mathbf{j}\right) \text{ or } \left(5.4\mathbf{i} + 3.2\mathbf{j}\right) (\text{m s}^{-1})$	A1	
		(7)	
8balt 2	Perpendicular to ST: direction $\pm \mu (-\mathbf{i} + 2\mathbf{j})$	B1	1.2
	$\mathbf{v} = 6\mathbf{i} + 2\mathbf{j} = p(2\mathbf{i} + \mathbf{j}) + q(-\mathbf{i} + 2\mathbf{j})$	M1	3.1b

B1 B1	$e \tan \alpha = \tan \beta$ Use of impact law perpendicular to the wall. Could be on a diagram or implied if $e \tan \alpha = \tan \beta$	they use	
8a B1	Component parallel to the wall unchanged. Could be on a diagram or implied if the	ney use	
	(Total 10	mark
		(7)	
	$\mathbf{w} = \left(\frac{27}{5}\mathbf{i} + \frac{16}{5}\mathbf{j}\right) \text{ or } \left(5.4\mathbf{i} + 3.2\mathbf{j}\right) (\text{m s}^{-1})$	A1	
	$\mathbf{w} = \mathbf{w} \cos(\alpha + \theta)\mathbf{i} + \mathbf{w} \sin(\alpha + \theta)\mathbf{j}$	M1	
	$\pm \frac{1}{2} \times \sqrt{40} \sin(\alpha - \beta) \left(= \frac{\sqrt{40}}{2} \times \frac{1}{\sqrt{50}} = 0.447 \right)$	A1	
	Component of w perpendicular to ST is $\frac{1}{2} \mathbf{v} \sin(\alpha - \beta)$	M1	
	$=\sqrt{40}\cos\left(\alpha-\beta\right)\left(=\sqrt{40}\times\frac{7}{\sqrt{50}}=6.26\right)$	A1	
	Component of w parallel to ST is $ \mathbf{v} \cos(\alpha - \beta)$	M1	
	$\alpha - \beta = 8.1^{\circ}$	B1	
	u α - β α β $180^{\circ}-\alpha$		
8balt	3	(7)	
	$\mathbf{w} = \left(\frac{27}{5}\mathbf{i} + \frac{16}{5}\mathbf{j}\right) \text{ or } \left(5.4\mathbf{i} + 3.2\mathbf{j}\right) (\text{m s}^{-1})$	A1	2.2
	Solve for p and q to obtain velocity $\mathbf{w} = \frac{14}{5} (2\mathbf{i} + \mathbf{j}) + \frac{1}{2} \times \frac{2}{5} (-\mathbf{i} + 2\mathbf{j})$	M1	3.1
	$\pm \frac{1}{2} \times q\left(-\mathbf{i} + 2\mathbf{j}\right)$	A1	1.1
	Component perpendicular to $ST \pm \frac{1}{2} \times q(-\mathbf{i} + 2\mathbf{j})$	M1	3.4
	$6 = 2p - q$, $2 = p + 2q$ $\left(p = \frac{14}{5}, q = \frac{-2}{5}\right)$	A1	1.1

B1	Use the direction to determine the range for <i>e</i> . (could come via $e \tan \alpha = \tan \beta < 1/2$)
8b	
B1	Correct vector perpendicular to ST seen or implied μ can have any scalar value
M1	Use scalar product to find component of v parallel to ST. λ can have any scalar value
A1	Correct unsimplified expression for the magnitude
M1	Use scalar product and impact law perpendicular to <i>ST</i> to find magnitude of component perpendicular to the wall. For their perpendicular vector Must clearly be using $e = \frac{1}{2}$. γ can have any scalar value.
A1	Correct unsimplified expression for the perpendicular component. Allow \pm
M1	Combine the magnitudes and directions to obtain the velocity. The perpendicular should now be in the correct direction.
A1	Correct simplified velocity.
8b alt	
B1	Correct vector perpendicular to ST seen or implied. μ can have any scalar value
M1	Correct method for component parallel to ST
A1	Correct equation in a and b
M1	Correct method for component perpendicular to <i>ST</i> Allow ± For their perpendicular vector
A1	Correct equation in a and b
M1	Solve for <i>a</i> and <i>b</i> to obtain velocity. Using the correct direction for the perpendicular component
A1	Correct simplified answer.
8b alt2	
B1	Correct vector perpendicular to ST seen or implied. μ can have any scalar value
M1	Split \mathbf{v} into components parallel and perpendicular to ST
A1	Two equations in p and q
M1	Use the impact law perpendicular to ST For their perpendicular vector
A1	Correct unsimplified perpendicular component. With q or their q

M1	Solve for p and q to obtain velocity Using the correct direction for the perpendicular component
A1	Correct simplified total.
8balt3	
B1	Seen or implied. $ \frac{\sin(\alpha - \beta) = \frac{1}{\sqrt{50}}, \cos(\alpha - \beta) = \frac{7}{\sqrt{50}}, \\ \tan(\alpha - \beta) = \frac{1}{7} $
M1	Correct use of their $ \mathbf{v} $ and their $\alpha - \beta$
A1	Correct unsimplified
M1	Correct use of $\frac{1}{2}$, their $ \mathbf{v} $ and their $\alpha - \beta$
A1	Correct unsimplified
M1	Use of Pythagoras and correct method for $\theta + \alpha$. $\cos(\alpha + \theta) = \frac{27}{\sqrt{5}\sqrt{197}}, \sin(\alpha + \theta) = \frac{16}{\sqrt{5}\sqrt{197}}$ $\alpha + \theta = 30.65^{\circ}$
A1	Correct simplified total.